Yeast Cbk1 and Mob2 Activate Daughter-Specific Genetic Programs to Induce Asymmetric Cell Fates

Alejandro Colman-Lerner1, Tina E. Chin, and Roger Brent
The Molecular Sciences Institute
2168 Shattuck Avenue
Berkeley, California 94704

Summary

In Saccharomyces cerevisiae, mothers and daughters have distinct fates. We show that Cbk1 kinase and its interacting protein Mob2 regulate this asymmetry by inducing daughter-specific genetic programs. Daughter-specific expression is due to Cbk1/Mob2-dependent activation and localization of the Ace2 transcription factor to the daughter nucleus. Ectopic localization of active Ace2 to mother nuclei is sufficient to activate daughter-specific genes in mothers. Eight genes are daughter-specific under the tested conditions, while two are daughter-specific only in saturated cultures. Some daughter-specific gene products contribute to cell separation by degrading the cell wall. These experiments define programs of gene expression specific to daughters and describe how those programs are controlled.

Introduction

Multicellular organisms are made up of different cell types organized into tissues and organs. One source of cellular diversity is asymmetric cell division due to differential segregation of mRNAs and proteins that determine cell fate. Numerous mechanisms underlying such asymmetry have been described in bacteria (Jacobs and Shapiro, 1998), worms (Rose and Kemphues, 1998), flies (Lu et al., 1998, 2000), and yeast (below).

Saccharomyces cerevisiae reproduces by budding. Mother cells form buds that separate to become daughters. Mothers and mothers are genetically identical but constitute distinct cell types. Many daughter components, such as the cell wall and plasma membrane, have been newly synthesized during the budding process. In addition, newborn daughters are smaller than their mothers, and thus spend more time in G1 before they are large enough to start budding themselves. Separation of daughters from mothers is asymmetric. During budding, chitin is preferentially deposited at the bud site, where it forms a ring around the base of the emerging bud (Sloat and Pringle, 1978). After the cell membranes separate, a septum made of cell wall material forms between the cells, inside the chitin ring. Degradation of this septum causes cell separation. The mother retains most of its chitin and displays a ring (the “bud scar”) visible by staining chitin with calcofluor, while the daughter is left with a circle in which chitin has been degraded (the “birth scar”; Pringle, 1991).

During the 1970s, one mechanism underlying mother-daughter asymmetry began to be revealed. Haploid yeast switch between a and α mating types. Mothers switch mating type, while daughters do not. Once they have budded, the former daughters (now mothers) switch mating type (Strathern and Herskowitz, 1979 and references therein). Switching occurs by replacement of a- or α-specific DNA sequences at the MAT locus with sequences of the opposite mating type (Oshima and Takano, 1971), a process initiated when the HO endonuclease, expressed only in mothers (Nasmyth, 1983), makes a double strand break at MAT (Strathern et al., 1982). Since the 1980s, study of the molecular mechanisms causing the differences between mothers and daughters has occupied a mainstream place in molecular biology. Yeast mother-daughter asymmetry provides a tractable system to elucidate the means by which cells give rise to progeny whose gene expression differs as a consequence of internal molecular events rather than as a consequence of different environmental conditions.

Continued work during the 1980s revealed the SWI gene products, positive regulators of HO transcription (Stern et al., 1984; Breeden and Nasmyth, 1987). By the early 1990s, some lines of evidence led to the view that mother-specific transcription of HO was due to Swi5, which was degraded in daughters but a small portion of which was protected in mothers (Tebb et al., 1993). However, failure to detect asymmetrical localization of Swi5 led to the suspicion that this idea might be incorrect (Nasmyth, 1993), and isolation of ash1 mutants, in which switching occurs in daughters, led to the current model for mother-specific expression of HO (Sil and Herskowitz, 1996; Bobola et al., 1996). In this view, daughters do not switch mating type because Ash1 represses transcription of their HO genes. Ash1 functions only in daughters because its mRNA, synthesized in early G1, is transported via actin cables to the bud, a process that requires Myo4, She2, She3, She4, and Bni1. In the bud, ASH1 mRNA is translated at anaphase, whereupon Ash1 protein translocates to the daughter nucleus and represses HO (Sil and Herskowitz, 1996; Bobola et al., 1996; Jansen et al., 1996). Aside from this regulation of HO, molecular mechanisms for mother-daughter asymmetry have not been described.

ASH1 transcription itself requires SWI5. Gene expression monitoring studies have shown that SWI5 belongs to a cell cycle regulated “expression cluster” induced during the G2 and M phases of the cell cycle—in this case, the “CLB2 cluster,” named for its prototype member, the gene encoding the B-type cyclin Clb2 (Spellman et al., 1998). Phosphorylation of Swi5 by Cdc28/Clb2 causes Swi5 to concentrate in the cytoplasm. At anaphase, Clb2 is degraded, and dephosphorylated Swi5 accumulates and migrates to the nucleus (Nasmyth et al., 1990; Moll et al., 1991), where it induces expression of ASH1 and other genes in early G1.

ACE2 is another member of the CLB2 cluster. Ace2 and Swi5 are paralogs that date from a duplication that doubled the ancestral S. cerevisiae genome (Wolfe and Shields, 1997). The proteins are 34% identical in se-
sequence and recognize the same DNA sites in vitro (Dohrmann et al., 1996). Either is sufficient for expression of several genes (McBride et al., 1999), including SIC1 (Nugroho and Mendenhall, 1994; Toyn et al., 1997), EGT2, which encodes a protein involved in cell separation (Bobola et al., 1996; Kovacech et al., 1996), and ASH1 (Bobola et al., 1996). However, in some cases, the function of the paralogs has diverged. Ace2, but not Swi5, is needed for the expression of CTS1, SCW11, YER124C, and YHR143W (Kuranda and Robbins, 1991; Doolin et al., 2001), while Swi5, but not Ace2, is required for expression of HO (Dohrmann et al., 1992).

Expression of CTS1, which encodes chitinase, a secreted enzyme required for cell separation, requires the protein kinase Cbk1 (Racki et al., 2000). ∆cbk1 strains fail to separate after mitosis and grow in clumps (Racki et al., 2000, and this paper). Mutations in ACE2 suppress the ∆cbk1 separation defect, and Cbk1 and Ace2 interact in two-hybrid experiments, suggesting that Cbk1 might regulate CTS1 expression by activating Ace2 (Racki et al., 2000). We isolated Cbk1 independently as a target in a hunt for peptide aptamers that blocked α factor-induced cell cycle arrest (Geyer et al., 1999). We showed that Cbk1 interacts with the pheromone pathway proteins Ste5 and Ste50 (Geyer et al., 1999). ∆cbk1 strains show partial resistance to α factor and defects in mating projection formation (shmooing), which prompted us to propose that Cbk1 connects the pheromone pathway to pathways that regulate cell morphology (Geyer et al., 1999). Cbk1 interacts with a number of proteins, including Mob1 (Ito et al., 2001), which is needed for exit from mitosis, presumably to activate the Mob1-interacting protein kinase Dbf2 (Lee et al., 2001). Cbk1 also interacts with Mob2, a protein whose se-
quences is 90% identical to that of Mob1 (Racki et al., 2000).

Here, we describe two distinct programs of gene expression in daughter cells. Both programs require Cbk1, Mob2, and Ace2. We first found that the CTS1 gene is expressed only by daughters. We identified other genes coexpressed under seemingly irrelevant conditions, then determined which of these candidate genes had promoters that drove daughter-specific expression. Daughter-specific expression results from Cbk1- and Mob2-dependent activation and localization of Ace2 to the daughter nucleus. One daughter-specific expression program consists of eight genes induced in daughter cells in early G1. It includes genes of known function, and four relatively uncharacterized genes which we named DSE, for Daughter-Specific Expression. The other program consists of two genes, ASH1 and EGT2. This program is conditional: in exponentially growing cultures, these genes are expressed in both mothers and daughters, but in saturated cultures, they are expressed only in daughters. Taken together with the enzymatic activities of the encoded proteins, our results indicate that some daughter-specific gene products bring about cell separation by degrading the septum from the daughter side of the mother-daughter pair.

Results

CTS1 Is Expressed in and Localized to Daughter Cells

To characterize Cbk1-dependent CTS1 regulation, we constructed a single-copy plasmid that carried the YFP gene under the control of the CTS1 promoter (–762 to –1; here, we refer to the nucleotide upstream of the start codon as –1). In exponentially growing yeast carrying P_{CTS1}-YFP, fluorescence was restricted to daughters in mother-daughter pairs (Figure 1a). In contrast, only mothers expressed P_{MOB1} (–1907 to –1)-YFP, and both mothers and daughters expressed P_{SIC1} (–123 to –1)-YFP (Figure 1c). To confirm the daughter cell designation, we monitored cells bearing P_{CTS1}-YFP by time-lapse photomicroscopy. We observed that after each cell finished dividing, only the newly budded cell, the daughter, became fluorescent (n = 50 cells). In Figure 1b, we show one example cell. At time 0, the unbudded cell displays fluorescence, consistent with CTS1 being expressed in early G1. As the cell buds, YFP fluorescence decreases (from 15 to 90 min), and the newly formed daughter becomes fluorescent (from 105 to 150 min). These results are consistent with the conclusion that CTS1 expression is restricted to daughters. We also observed that in W303 diploid strains carrying P_{CTS1}-YFP, fluorescence was restricted to daughters (not shown).

Since CTS1, the gene encoding chitinase, was expressed only in daughters, we wondered whether chitinase might be concentrated in the daughter cell wall. We constructed ACLY362, a strain that expresses a Cts1-YFP fusion, and examined the fluorescence localization. In mother-daughter pairs, Cts1-YFP localized to the bud neck (Figure 1d). To determine whether Cts1-YFP was localized to the daughter side of the bud neck cell wall, we stained the cells with calcofluor white. As shown in Figure 1d, YFP fluorescence was seen on one side of the bud neck, while calcofluor staining of chitin was concentrated on the opposite side. These results are consistent with the idea that chitinase, secreted by daughters, is concentrated on the daughter side of the bud neck.

The only previously studied case of asymmetric expression in yeast, mother-specific expression of HO, results from daughter-specific accumulation of the HO repressor Ash1. Therefore, we tested whether daughter-specific expression of CTS1 depended on Ash1 or Ash1 localization. We observed the expression of P_{CTS1}-YFP in Δash1, Δmyo4, and Δshe4 cells (not shown). In all strains, the YFP signal was daughter-specific. Therefore, daughter-specific CTS1 expression was independent of Ash1 and the machinery involved in ASH1 mRNA transport.

We investigated the dependence of CTS1 daughter-specific expression on Cbk1 and Ace2. In Δace2 cells, P_{CTS1}-YFP fluorescence was undetectable; in Δcbk1 cells, P_{CTS1}-YFP fluorescence was greatly reduced and asymmetric expression was lost. Deletion of SWI5, which is not involved in CTS1 expression, did not affect asymmetric P_{CTS1}-YFP fluorescence (Figure 1a). In contrast, deletion of cbk1 or ace2 did not affect mother-specific expression of P_{MOB1}-YFP, while deletion of SWI5 abolished it (not shown).

CTS1 Defines a Larger Set of Cbk1- and Ace2-Dependent Daughter-Specific Genes

We set out to identify possible additional daughter-specific genes by whole-genome gene expression monitoring. No mother-daughter differential whole-genome expression data was available to us. However, we tested the idea that other daughter-specific genes might be coregulated with CTS1 under different, seemingly irrelevant conditions.

Since CTS1 is cell cycle regulated, we first examined other genes that were cell cycle regulated in a CTS1-like manner. From gene expression monitoring experiments, CTS1 has been grouped in a set of genes designated as the “SIC1 cluster”. This cluster is transcribed in late M and/or early G1 (Spellman et al., 1998; Figure 2a). Some of the SIC1 cluster genes are known to require either Swi5 or Ace2 for expression, and most contain putative binding sites for these activators in their regulatory regions (Spellman et al., 1998). We used YFP reporters to examine expression from the promoters (from –1200 to –1 for each gene) for the genes in the SIC1 cluster and from other genes whose expression is controlled by Swi5 and Ace2 (see Tables 1 and 2). Seven of the 26 tested promoters (CST13, PRY3, SCW11, YER124C, YHR143W, YOR264W, and YNR067C) directed daughter-specific fluorescence in exponentially growing cells. 16 promoters displayed approximately equal fluorescence in mothers and daughters, and three showed no detectable YFP fluorescence (Figure 1e and Tables 1 and 2). Six of the eight daughter-specific promoters (including CTS1) belonged to a smaller, eight-gene subnode of the SIC1 cluster (Figure 2a). Four of the genes (YER124C, YHR143W, YOR264W, and YNR067C) were previously only partly characterized (Doolin et al., 2001; Drees et al., 2001); we named these DSE1, DSE2, DSE3, and DSE4 (for Daughter-Specific Expression).
for CTS1, there was no detectable YFP expression from these seven promoters in Δckb1 or Δace2 strains, and YFP expression in Δswi5 strains was indistinguishable from that in wild-type (not shown).

ASH1 and EGT2 Define Another, Conditional, Set of Cbk1- and Ace2-Dependent Daughter-Specific Genes

If the eight daughter-specific genes defined a transcriptional regulon, then they might be expected to show similar patterns of expression in circumstances other than cell cycle progression. To test this idea, we examined whole-genome expression data from cells perturbed by environmental stresses and carbon source changes (Gasch et al., 2000) and by deletion of different genes and various drug treatments (Hughes et al., 2000). In both datasets, most of the daughter-specific genes were co-regulated (Table 1 and Figure 2c and 2c).

For Table 1 and Figure 2c and 2c:

<table>
<thead>
<tr>
<th>Gene</th>
<th>Expression Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTS1</td>
<td>Co-regulated</td>
</tr>
<tr>
<td>CST13</td>
<td>Co-regulated</td>
</tr>
<tr>
<td>DSE1</td>
<td>Co-regulated</td>
</tr>
<tr>
<td>DSE2</td>
<td>Co-regulated</td>
</tr>
<tr>
<td>SCW11</td>
<td>Co-regulated</td>
</tr>
<tr>
<td>DSE3</td>
<td>Co-regulated</td>
</tr>
<tr>
<td>DSE4</td>
<td>Co-regulated</td>
</tr>
<tr>
<td>PRY3</td>
<td>Co-regulated</td>
</tr>
</tbody>
</table>

Figure 2. Coregulation of Daughter-Specific Genes and Analysis of Existing Whole-Genome Expression Data

(a) Expression of the “SIC1 cluster” genes as yeast progress through the cell cycle after release from α factor, cdc15-2, and cdc28-4 arrest and after collection from an elutriation chamber (Spellman et al., 1998). Members of the first group of daughter-specific genes defined here (CTS1, CST13, DSE1, DSE2, SCW11, DSE3, DSE4, and PRY3) are underlined and marked with a circle. Note that CTS1, CST13, DSE1, DSE2, and SCW11 belong to one branch of this cluster (in cyan) while DSE3 and DSE4 belong to another. These two genes differ in their regulation from the other daughter-specific genes in response to some perturbations; in particular, DSE3 and DSE4 are not induced by α factor.

(b) Daughter-specific genes (marked with circles) are co-regulated in response to deletion of different genes (Hughes et al., 2000). Each column corresponds to a different deletion or drug treatment.

(c) Unconditional and conditional daughter-specific genes (marked with circles) cluster together in the environmental stress response data set (Gasch et al., 2000). Stress conditions are heat shock (HS), increasing concentrations of hydrogen peroxide (H2O2), menadione (M), dithiothreitol (dt), diamide (D) and sorbitol (Sor), time after amino acid deprivation (aa), nitrogen depletion (N dpl) or growth on YPD (YPD), time course of diauxic shift (DS) or steady state (SS), and growth in different carbon sources (CS). In (a) and (b), we clustered the original raw data using the Cluster software (Eisen et al., 1998); in (c), the clustering was performed by Gasch et al. (2000). Red indicates upregulation and green indicates downregulation with respect to reference mRNA from cells grown asynchronously (a), wild-type cells (b), and from cells that were not perturbed by stressful treatment (c). Gray boxes indicate data missing from the published datasets.

(d) ASH1 and EGT2 expression in saturated cultures is daughter-specific. Expression of PASH1-YFP and PEGT2-YFP in cells from exponentially growing (left) or saturated cultures (OD600=5, right) of YAS245-5C. We identified cells as mothers or daughters by staining chitin with calcofluor (arrows indicate birth scars; arrowheads, bud scars). Figure shows representative mother-daughter pairs.
clumped with the other daughter-specific genes in the deletion data set.

ASH1 was coregulated with the daughter-specific genes in the stress-response dataset but not in the deletion dataset. These results suggested that under environmental stress conditions, expression of ASH1 (and perhaps of other genes) might be restricted to daughters. To test this idea, we examined YFP fluorescence driven by P_{ASH1} and the other previously tested promoters in saturated cultures (see Experimental Procedures). Here, for daughter cell designation, we stained cells with calcofluor white, which labels bud scars (Pringle, 1991), present only in mothers. Under this stress condition, P_{ASH1}—YFP and P_{EGT2}—YFP-derived fluorescence were only visible in cells lacking bud scars, i.e., daughters, as were the eight previously identified daughter-specific promoters (Figure 2d). The remaining 16 promoters either did not direct YFP expression or directed equal expression in mothers and daughters (see Table 2). In saturated cultures, daughter-specific expression of ASH1 and EGT2 required Ace2 and Cbk1 but was independent of Swi5 (not shown). This observation suggested that EGT2 and ASH1 define a separate, conditional program of daughter-specific gene expression active in saturated cultures.

Ace2 Localizes to the Daughter Nucleus

Expression of ACE2-dependent genes was restricted to daughters. We hypothesized that this might be the result of asymmetric localization of Ace2. To test this idea, we used a plasmid containing a YFP-Ace2 fusion protein under the control of P_{ACE2}. This plasmid complemented the separation defect in Δace2 cells (not shown), indicating that the fusion protein was functional. We observed the localization of YFP-Ace2 at the end of the first mitosis after α factor arrest (approximately 80 min). Ace2 induction of mating projections that are not resorbed, allowing mothers to be distinguished from daughters born after release. At the end of mitosis, YFP-Ace2 expression was confined to daughter nuclei (Figure 3a), except for a fraction of cells (~10%) that showed both mother and daughter nuclear YFP signal.

Ace2 Transiently Translocates to the Mother Nucleus

We realized that localization of Ace2 to the daughter nucleus could be due to at least three mechanisms: (1) preferential accumulation of Ace2 in the cytoplasm of the future daughter followed by import into the nearest nucleus, (2) export/degradation of Ace2 from/within the mother nucleus, or (3) preferential import of Ace2 into the daughter nucleus. To distinguish among these possibilities, we monitored the localization of YFP-Ace2 in cells released from α factor arrest by time-lapse microscopy. Before its nuclear transport, YFP-Ace2 was evenly distributed in the cytoplasm of the mother and the nascent daughter. Initially, YFP-Ace2 translocated to both mother and daughter nuclei. Whereas YFP fluorescence in the mother nucleus disappeared rapidly, it continued to increase in the daughter nucleus up to a maximum at 22 min, after which it decreased (Figures 3b and 4c). Since YFP-Ace2 was degraded in late G1 in both cell types, it seemed possible that YFP-Ace2 disappeared faster from mother nuclei because mothers complete G1 more rapidly. To test this possibility, we made a strain that carried the cdc15-2 allele and used this temperature-sensitive mutation to arrest cells at telophase. Mothers and daughters released from such arrest cycle nearly synchronously during the first cell division (Futcher, 1999). After release from cdc15 block, YFP-Ace2 still accumulated in daughter nuclei after a transient state in which it localized to both nuclei (not

Table 1. Genes that Show Daughter-Specific Expression

<table>
<thead>
<tr>
<th>Gene</th>
<th>Function</th>
<th>Loc</th>
<th>EG</th>
<th>SC</th>
<th>Env Stress Data Set</th>
<th>Deletion Data Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTS1</td>
<td>Endoglucanase</td>
<td>CW (E)</td>
<td>D</td>
<td>D</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CST13</td>
<td>Stress Response?</td>
<td>Nuc (P)</td>
<td>D</td>
<td>D</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SCW11</td>
<td>Glucanase?</td>
<td>CW (P)</td>
<td>D</td>
<td>D</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PRY3</td>
<td>Mating Response?</td>
<td>CW (E)</td>
<td>D</td>
<td>D</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DSE1/YER124C</td>
<td>Signal Transduction?</td>
<td>Cyt (P)</td>
<td>D</td>
<td>D</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DSE2/YHR143W</td>
<td>Glucanase?</td>
<td>CW (P)</td>
<td>D</td>
<td>D</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DSE3/YOR264W</td>
<td>Glucanase?</td>
<td>Nuc (P)</td>
<td>D</td>
<td>D</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DSE4/YNR067C</td>
<td>Unknown</td>
<td>CW (P)</td>
<td>D</td>
<td>D</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ASH1</td>
<td>Transcription Factor</td>
<td>Nuc (E)</td>
<td>M/D</td>
<td>D</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>EGT2</td>
<td>Endoglucanase?</td>
<td>CW (E)</td>
<td>M/D</td>
<td>D</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Abbreviations as in Table 1.

Table 2. Genes that Do Not Show Daughter-Specific Expression

<table>
<thead>
<tr>
<th>Gene</th>
<th>EG</th>
<th>SC</th>
<th>Gene</th>
<th>EG</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUD9</td>
<td>M/D</td>
<td>ND</td>
<td>REM1</td>
<td>M/D</td>
<td>ND</td>
</tr>
<tr>
<td>CDC6</td>
<td>M/D</td>
<td>ND</td>
<td>SIC1</td>
<td>M/D</td>
<td>ND</td>
</tr>
<tr>
<td>CHS1</td>
<td>M/D</td>
<td>ND</td>
<td>TEC1</td>
<td>M/D</td>
<td>ND</td>
</tr>
<tr>
<td>CYK3</td>
<td>M/D</td>
<td>ND</td>
<td>YMR316C-A</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>FAA3</td>
<td>ND</td>
<td>ND</td>
<td>YNL046W</td>
<td>M/D</td>
<td>ND</td>
</tr>
<tr>
<td>HO</td>
<td>M</td>
<td>ND</td>
<td>YNL076W</td>
<td>M/D</td>
<td>ND</td>
</tr>
<tr>
<td>PCL2</td>
<td>M/D</td>
<td>ND</td>
<td>YGR149W</td>
<td>M/D</td>
<td>M/D</td>
</tr>
<tr>
<td>PCL9</td>
<td>M/D</td>
<td>ND</td>
<td>YGR086C</td>
<td>M/D</td>
<td>M/D</td>
</tr>
<tr>
<td>PIR3</td>
<td>M/D</td>
<td>M/D</td>
<td>YOR263C</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>PST1</td>
<td>M/D</td>
<td>M/D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations as in Table 1.
Figure 3. Ace2 Accumulates in the Daughter Nucleus
(a) YFP-Ace2 fluorescence in wt (YAS245-5C) cells. Left: YFP-Ace2 fluorescence 80 minutes after release from \(\alpha \) factor arrest. Middle: DNA staining (DAPI). Right: transmitted light image. All three panels show the same cells.
(b) Time-lapse photomicroscopy of YFP-Ace2 fluorescence in wt cells after release from \(\alpha \) factor arrest. Top left: transmitted light image after mounting cells on an agarose pad 30 minutes after release from \(\alpha \) factor arrest. Remaining panels show time-lapse pictures starting 40 minutes after mounting (70–114 min after \(\alpha \) factor arrest). Numbers correspond to elapsed time in min after the first frame. Double arrows indicate nuclei.
(c) Quantitation of YFP-Ace2 nuclear fluorescence of the cell labeled 1 in (b). Values correspond to the computed YFP fluorescence over time, starting at 6 minutes after the first frame.

These findings are thus consistent with a combination of mechanisms 2 and 3, in which asymmetric localization of Ace2 is the result of its rapid removal from the mother nucleus, either by degradation or export, together with its preferential import into the daughter nucleus.

The Cbk1 Interacting Protein Mob2 Is Required for Daughter-Specific Expression
In order to gain further insight into the mechanism responsible for daughter-specific expression, we analyzed the cell separation phenotype in strains which lacked the genes coding for proteins known to interact with Cbk1: Yol036, Lre1, Ssd1, Not3, and Mob2 (Racki et al., 2000). Among these mutants, the \(\Delta \)mob2 strain, ACLY363, but no others, showed a cell separation defect (below). In ACLY363, expression of constitutive daughter-specific genes was undetectable. In saturated cultures, expression of EGT2 and ASH1 was greatly reduced and asymmetric expression was lost (data not shown). This fact suggested that the separation defect in \(\Delta \)mob2 cells arises because of defects in the expression of chitinase and other daughter-specific gene products. The function of Mob2 is unknown, but its homolog, Mob1, interacts with the mitotic exit network kinase Dbf2 and is required for its activation (Mah et al., 2001). Dbf1 shares 31% sequence identity and 52% sequence similarity with Cbk1. We suggest that Mob2 may be required to activate Cbk1.

Cbk1 and Mob2 Localize to the Growing Bud Tip, Then to the Bud Neck and the Daughter Nucleus
To understand the mechanism of Cbk1/Mob2/Ace2 activation of daughter-specific genes, we determined the subcellular localization of Cbk1 and Mob2 using protein fusions to GFP (Cbk1) or YFP (Mob2) and tracked fluorescence as cells progressed through the cell cycle after release from \(\alpha \) factor arrest. Localization of Cbk1-GFP and Mob2-YFP was similar (Figures 4a and 5d, top). Before release from arrest, Cbk1-GFP and Mob2-YFP were localized to the schmoo tip. In budding cells (50 min after release), both proteins were present in the growing bud membrane. In large budded cells (80 min after release, in which mother and daughter DNA have separated), both proteins were localized to the bud neck and the daughter nucleus. We performed time-lapse photomicroscopy of exponentially growing cultures to determine if, as for Ace2, Cbk1 and Mob2 transiently localize to the mother nucleus. We observed a small amount of Cbk1-GFP and Mob2-YFP in the mother nucleus (Figure 4b and not shown) that lasted for about
Figure 4. Colocalization of Cbk1 and Mob2
(a) Cbk1-GFP fluorescence in wt (ACLY315) cells after release from α factor arrest.
(b) Time lapse photomicroscopy of ACLY315 cells growing on an agarose pad. Numbers indicate the time in min after the first frame. Arrowhead indicates the mother nucleus.
(c) Top: Cbk1-GFP fluorescence in \(\Delta \)mob2 cells (ACLY360). Bottom: DNA staining (DAPI) of cells shown in the top panels. Arrowhead indicates the bud neck.
(d) Mob2-YFP fluorescence in wt (ACLY364), \(\Delta \)ace2 (ACLY369), and \(\Delta \)cbk1 (ACLY368) cells.
(e) Two-hybrid mating analysis of Mob2-bait and Cbk1 and Ace2\(_{1–449}\) preys. Panel shows a galactose/raffinose Xgal plate after 1 day at 30°C. pEG202 and pJG4-5 are the empty bait and prey vectors. Dark patches indicate activation of the lacZ reporter due to protein interaction. In (a) and (b), arrows indicate daughter nuclei. In (a), (c), and (d), numbers represent time after release from α factor arrest. Note that in live cells, DAPI also stains mitochondria.

4 min, indicating that Cbk1 and Mob2 also transiently localized to the mother nucleus.

Cbk1 Kinase Activity and Mob2 Are Required for Transcriptionally Active Ace2 to Accumulate in the Daughter Nucleus
Since Cbk1 and Mob2 were necessary for the induction of the daughter-specific Ace2-dependent genes, we examined whether asymmetric nuclear localization of Ace2 required Cbk1 and Mob2. We monitored YFP-Ace2 in \(\Delta \)cbk1 and \(\Delta \)mob2 cells. In these cells, YFP-Ace2 was present in both mother and daughter nuclei (Figure 5a and data not shown), suggesting that Cbk1 and Mob2 might be required for accumulation of Ace2 in the daughter nucleus but not for nuclear translocation per se. In the absence of Cbk1 or Mob2, daughter-specific genes were not expressed (Figure 1 and data not shown), even though Ace2 was in the nucleus. This result suggested that Cbk1 and Mob2 have an additional function(s) needed for Ace2 to activate transcription.

To test whether these functions required Cbk1 protein kinase activity, we constructed a strain that expresses a mutant Cbk1 (Cbk1-M429A) with a lesion in its ATP binding pocket. This lesion makes the ATP binding site larger, allowing it to interact with the inhibitors NaPP1 and 1NM-PP1 (Bishop et al., 2000). In the absence of
daughter nuclei (Figure 5a). Similarly, Cbk1-M429A cells treated with inhibitors showed no YFP fluorescence from PCTS1 and other daughter-specific reporters (not shown). These experiments indicate that Cbk1 kinase activity is required for specific accumulation of Ace2 in the daughter nucleus, and also for an additional function needed to activate transcription of daughter-specific genes.

Active Ectopic Ace2 Activates Daughter-Specific Genes in Mothers

To determine if translocation of active Ace2 to the daughter nucleus was sufficient to bring about daughter-specific gene expression, we delivered active Ace2 to the mother nucleus and determined whether active ectopic Ace2 could induce daughter-specific genes in mothers. Activation and proper localization of wild-type Ace2 requires Cbk1 and Mob2. We reasoned that an Ace2 gain-of-function mutant such as Ace2-G128E, which is active in \(\Delta cbk1 \) mutants (Racki et al., 2000), might accumulate in both nuclei. To test this idea, we used a reporter plasmid expressing YFP-Ace2-G128E controlled by PACE2 in wt cells. This Ace2 mutant accumulated in mother and daughter nuclei at the end of mitosis (Figure 5b). We then constructed a strain which expressed Ace2-G128E instead of Ace2 and examined expression of PCTS1-YFP. In this strain, PCTS1-YFP expression was visible in both mothers and daughters (Figure 5c). These results are consistent with the idea that localization of Ace2 to the daughter nucleus and its activation by Cbk1/Mob2 are sufficient for daughter-specific gene expression.

Cbk1, Mob2, and Ace2 Are Required to Localize One Another

Cbk1 and Mob2 were required to localize Ace2 to the daughter nucleus. Since Cbk1 and Mob2 interacted and colocalized to the growing bud tip, the bud neck, and the daughter nucleus, we examined the relevant deletion It, Resulting in Daughter-Specific Gene Expression strains to determine whether they were required for each other’s localization. In \(\Delta mob2 \) cells, Cbk1-GFP was not visible at the bud tip, although it still concentrated at the bud neck during budding, but at the end of mitosis it concentrated in both mother and daughter nuclei (Figure 4d, bottom). These results are consistent with the conclusion that Cbk1 and Mob2 are required for the correct localization of one another in time and space.

The pattern of nuclear localization of Mob2 was similar to that of Ace2. Therefore, we asked if Ace2 was required for Mob2 nuclear transport. To test this idea, we used \(\Delta ace2 \) cells that expressed Mob2-YFP. In these cells, Mob2-YFP fluorescence localized to the bud tip and the bud neck but did not accumulate in the nucleus (Figure 4d, middle). This finding suggested that Ace2 was required for Mob2 nuclear transport. In further support of this conclusion, in yeast bearing the gain-of-function mutant Ace2-G128E, Mob2-YFP fluorescence localized to both mother and daughter nuclei at the end of mitosis.
Our results also uncovered a second program. This program causes daughter-specific expression of genes under particular environmental conditions. In exponentially growing cultures, ASH1 and EGT2 are expressed in mothers and daughters, and either Swi5 or Ace2 can activate their expression. However, in saturated cultures, transcription of these genes is restricted to daughter cells and shifts from dual control by Swi5 and Ace2 to exclusive control by Ace2 (Figure 2d and Table 1). In saturated cultures, expression of the Swi5-dependent HO promoter is greatly diminished (Table 2), suggesting that the shift in control may be due to a reduction in Swi5 activity.

ASH1 protein product is expressed in daughters due to daughter-specific localization of its mRNA. Our finding that, in saturated cultures, activity of the ASH1 promoter is also confined to daughters identifies a second mechanism of daughter-specific ASH1 expression. It is possible that in saturated cultures (and perhaps in colonies), both mechanisms are active. If so, the effect would be to localize Ash1 (and perhaps other proteins)
to daughters of daughters and thus to bring about cell fates specific to granddaughters. Such localization of Ash1 would mean that, in saturated cultures, mothers and daughters, but not granddaughters, could switch mating types.

Cell Separation

Cells lacking CBK1 or its target genes CTS1 and SCW11 show defects in mother-daughter separation (Kuranda and Robbins, 1991, Cappellaro et al., 1998). CTS1 encodes chitinase. SCW11 encodes a protein with sequence similarity to glucanases. DSE2 and DSE4 also encode secreted proteins with sequence similarity to glucanases. It seems likely, then, that at least these four daughter-specific genes encode proteins that degrade the cell wall from the daughter side and cause daughters to separate from mothers. Cells lacking the conditional daughter-specific gene EG12 also show separation defects. EG2 encodes a cell wall protein, and cells lacking EG2 show overall reductions in glucanase levels (Kovacech et al., 1996; Smits et al., 1999). Our results provide an explanation for the bud-scar/birth-scar asymmetry after cell division: upon cell separation, daughter-specific expression of Cts1 and these other proteins degrades material on the daughter-proximal side of the septum and causes the birth scar. The remaining material on the mother-proximal side of the septum is undegraded, and forms the bud scar.

A Possible Cytokinesis Checkpoint

Why does Ace2 need to be activated by Cbk1/Mob2? Our findings indicate that daughter-specific gene expression leads to the degradation of the connecting septum, followed by cell separation (see below). We found that Cbk1 and Mob2 localized to the bud neck just when Ace2 began to accumulate in the daughter nucleus, suggesting that Cbk1/Mob2 movement to the bud neck might trigger Ace2 movement to the nucleus. The Cbk1 and Mob2 proteins would thus appear suited to transduce a signal indicating the completion of membrane fission in the bud neck. We propose that this Cbk1/Mob2 signal is part of a “cytokinesis checkpoint” that ensures that cell wall degradation does not commence until membrane fission is completed. In this model, at the end of mitosis, Ace2 would integrate a cell cycle and a morphogenic signal.

Systematizable Methods to Identify Programs of Gene Expression

We have identified programs of gene expression specific to daughter cells. Some of the methods that enabled these findings deserve mention. First, we made extensive use of fluorescent protein reporters to look among many candidate promoters to find those which were in fact daughter-specific. Second, in two cases, we identified sets of candidate daughter-specific genes by the fact that they were coregulated under other, seemingly irrelevant, circumstances, and in response to other, seemingly irrelevant, perturbations. This ability to reexamine preexisting expression data is potentially quite useful. We suspect that enough published gene expression data now exists to identify other genetic programs involved in other processes by coregulation under seemingly unrelated circumstances. Moreover, as the quantity of expression data collected for other purposes, or even collected without reference to any hypothesis, increases, the utility of irrelevant coregulation to identify new programs and pathways should also increase.

Table 3. Strain List

<table>
<thead>
<tr>
<th>Strain Name</th>
<th>Relevant Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>YAS245-5C</td>
<td>MATa</td>
</tr>
<tr>
<td>ACLY245</td>
<td>AT::cbk1::kanMX6</td>
</tr>
<tr>
<td>ACLY311</td>
<td>AT::ace2::his5+</td>
</tr>
<tr>
<td>ACLY313</td>
<td>AT::sws1::his5+</td>
</tr>
<tr>
<td>ACLY315</td>
<td>AT::cbk1::CBK1-GFP::his5+</td>
</tr>
<tr>
<td>ACLY330</td>
<td>AT::cbk1::M429A</td>
</tr>
<tr>
<td>ACLY360</td>
<td>AT::cbk1::CBK1-GFP::his5+::mob2::TRP1</td>
</tr>
<tr>
<td>ACLY362</td>
<td>AT::cts1::CTS1-YFP::his5+</td>
</tr>
<tr>
<td>ACLY363</td>
<td>AT::mob2::TRP1</td>
</tr>
<tr>
<td>ACLY364</td>
<td>AT::mob2::MOB2-YFP::his5+::mob2::TRP1</td>
</tr>
<tr>
<td>ACLY368</td>
<td>AT::mob2::MOB2-YFP::his5+::cbk1::kanMX6</td>
</tr>
<tr>
<td>ACLY369</td>
<td>AT::mob2::MOB2-YFP::his5+::ace2::kanMX6</td>
</tr>
<tr>
<td>ACLY382</td>
<td>AT::ace2::his5+::pACE2-G128E</td>
</tr>
</tbody>
</table>

Strains used during this work. All were derived from W303a as described in the Experimental Procedures and the Supplemental Experimental Procedures at http://www.cell.com/cgi/content/full/107/6/739/DC1.

Relevance to Other Organisms

Cell fate asymmetry in budding yeast is regulated by mother-specific transcription of HO and by daughter-specific programs described here. These results cannot exclude the idea that there may be still other asymmetric processes that regulate events specific to mothers, daughters, and, perhaps (in light of our findings with Ash1), granddaughters. The proteins that govern the daughter-specific proteins, the kinase Cbk1, Mob2, and the transcription factor Ace2, have homologs in other organisms. It would not be surprising to find that these proteins regulate asymmetric cell division and lineage determination in higher eukaryotes.

Experimental Procedures

Genetic and Molecular Biological Methods

Nucleic acid and yeast manipulations were performed as described (Ausubel et al., 1987; Guthrie and Fink, 1991).

Yeast Strains and Plasmids

Strains are detailed in Table 3. YAS245-5C (can1::HO-CAN1 1HO::HO- ADE2 ura3 ade2 leu2 trp1 his3) is a W303a derivative (Anita Sil, personal communication). Other strains in Table 3 derive from YAS245-5C. Construction, by standard techniques, is detailed in the Supplemental Experimental Procedures at http://www.cell.com/cgi/content/full/107/6/739/DC1.

We constructed YFP reporter plasmids as follows. We isolated a KpnI-BamHI fragment containing Paur, the EcoRI and XhoI sites, and the ADH1 terminator from pJG4-4 (Geyer et al., 1999) and introduced it into prS316 (Sikorski and Hieter, 1989) to generate pACL7. We made YFP by PCR-mediated site-directed mutagenesis of the GFP sequence from A. victoria and introduced the gene into pACL7 to make pACL7-YFP. We removed the Paur fragment to make a plasmid backbone into which we introduced fragments containing other promoters. Details of these constructions are given in the Supplemental Experimental Procedures.
Growth Conditions and Cell Cycle Arrest

To test promoter expression patterns, we first grew colonies bearing the appropriate plasmids or integrated constructs overnight in BSM (QBiovagene, Inc., Carlsbad, CA) 2% glucose. We then diluted these cultures to OD_{600} 0.1 in BSM 2% raffinose and allowed them to grow to OD_{600} 0.5 at 30°C, then prepared the cells for microscopy. The slow growth of cells on raffinose allows YFP synthesized during late M/early G1 to be degraded before the next round of cell division (in our hands, the half-life of YFP is approximately 2 hr; see Supplemental Experimental Procedures). To determine the pattern of expression in saturated cultures, we diluted overnight cultures to OD_{600} 0.1 in BSM 2% (w/v) glucose and allowed the cultures to grow to OD_{600} 5 (×10^6 cells/ml) at 30°C before examination. Since YFP fluorescence is very low on standard (pH 5.0) synthetic medium, to image secreted Cts1-YFP in ACLY362 cells, we shifted exponentially growing cells to synthetic medium equilibrated to pH 7 for 2 hr before observation.

To synchronize cells, we arrested them with α factor as described (Futcher, 1999). Briefly, we diluted overnight cultures to OD_{600} 0.08 in BSM 2% glucose and grew them to OD_{600} 0.3 at 30°C. At this point we added 3 μM α factor. As judged by microscopic observation, cells were arrested and shmooing 90 min later. We removed α factor by filtration and rinsing, resuspended the cells in fresh BSM 2% glucose medium, and took samples every 10 min.

Imaging

We fixed cells for fluorescent microscopy by adding paraformaldehyde (pH 7.2) to 2% for 1 hr on ice. We washed the cells in PBS twice before examination. To image living cells, we directly mounted samples in growing medium. To stain DNA or chitin, we added DAPI (100 ng/ml) or calcofluor (100 ng/ml), respectively, just before mounting.

We determined GFP and YFP fluorescence using the Piston GFP and the HQ YFP filter set (sets 41025 and 41028 from Chroma Technologies Corp, Brattleboro, VT), respectively. We imaged DAPI and calcofluor using the DAPI filter set (set 31000 from Chroma). We captured and analyzed images using a SPOT2e CCD camera (Diagnostic Instruments, Inc., Sterling Heights, MI) coupled to MetaMorph imaging software (Universal Imaging Corporation, Downingtown, PA).

For time-lapse photomicroscopy, we mounted living cells on 2% agarose pads prepared in BSM with 2% glucose and took 2 s exposures at 2 min intervals over a period of 2 hr. We quantified the fluorescence from the resulting images and computed YFP-based fluorescence at each time as follows. First, we measured YFP photo-bleaching by imaging wt cells containing but not expressing new YFP for 2 s out of 4 s, over 240 s. These cells contained YFP under the control of the GAL1 promoter; we regulated the initial YFP level by shifting exponentially growing cells from 2% glucose to 2% raffinose, 1% galactose for three hours, followed by a return to 2% glucose for 30 min before imaging. We observed autofluorescence photo-bleaching by imaging cells lacking YFP for 2 s, every 4 s, over 240 s as above. We obtained the photobleaching function, τ = 0.071 + 0.977e^{-t/T}, where t is the single image exposure time in seconds, by fitting the net fluorescence data (YFP minus autofluorescence) from these experiments to an offset exponential function (R^2 = 0.9978). We then quantified the amount of YFP in the nucleus of individual cells in a visual field using the formula

\[\text{YFP_{nucleus}} = \text{YFP_{1 - 1}} + \frac{\text{Obs}_{1 - 1} - \text{Auto}_{1 - 1}}{\text{YFP}_{1 - 1} - \text{Auto}_{1 - 1}} \]

where YFP and YFP_{1 - 1} are the computed YFP-based fluorescence at times i and i - 1, respectively, Obs and Auto are the observed fluorescence at times i and i - 1, respectively, and \(\text{YFP}_{1 - 1} \) is the fraction of YFP fluorescence remaining after photobleaching.

Interaction Mating

We tested the interaction between LexA-Mob2 and Ace2-449 and Cbk1 in interaction mating two-hybrid experiments using the LexAop-lacZ reporter pSH18-34 essentially as described (Finley and Brent, 1994).

Analysis of Gene Expression Data

Acknowledgments

We are grateful to Gustavo Pesce, Drew Endy, Eric Lyons, Oma Resnekov, Eduard Serra, Larry Lok, Ian Burbulis, Ivgeni Kroll, Andy Mendelsohn, and Sydney Brenner for their advice and comments, to Anita Sil for providing yeast strains, and to Kevan Shokat for chemical kinase inhibitors. Work at TMSI is supported by grants from NIGMS, NHGRI, and the DARPA Information Technology Office. This work was supported by a grant to RB from NHGRI.

Received May 29, 2001; revised October 29, 2001.

References

